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Let 𝑅 be a ring with center 𝑍(𝑅), and 𝐼 be a nonzero left ideal. An additive 
mapping ℎ: 𝑅 → 𝑅 is called a homoderivation on 𝑅 if ℎ(𝑥𝑦) = ℎ(𝑥)ℎ(𝑦) +
ℎ(𝑥)𝑦 + 𝑥ℎ(𝑦)for all 𝑥. 𝑦 ∈ 𝑅. In this paper, we prove the commutativity of R 
if any of the following conditions is satisfied for all   𝑥. 𝑦 ∈ 𝑅: (i)  𝑥ℎ(𝑦) ±
𝑥𝑦 ∈ 𝑍(𝑅). (ii)    𝑥ℎ(𝑦) ± 𝑦𝑥 ∈ 𝑍(𝑅). (iii)    𝑥ℎ(𝑦) ± [𝑥. 𝑦] ∈ 𝑍(𝑅)    (iv)[𝑥. 𝑦] ∈
𝑍(𝑅)(v)[ℎ(𝑥)𝑦] ± 𝑥𝑦 𝑍(𝑅)and (vi)   [ℎ(𝑥). 𝑦] ± 𝑦𝑥 ∈ 𝑍(𝑅). This result is in 
the sprite of the well-known theorem of the commutativity of prime and 
semiprime rings with derivations satisfying certain polynomial constraints. 
Also, we prove that the commutativity of prime ring on R, if R admits a 
nonzero homoderivation ℎ such that ℎ([𝑥. 𝑦]) = ±[𝑥. 𝑦] for all 𝑥. 𝑦 in a 
nonzero left ideal. 
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1. Introduction 

*Throughout, 𝑅 denotes a ring with a center 𝑍(𝑅). 
We write [𝑥. 𝑦] 𝑓𝑜𝑟 𝑥𝑦 − 𝑦𝑥 and is called the 
commutator. A ring 𝑅 is called prime if 𝑎𝑅𝑏 = 0 
implies 𝑎 = 0 𝑜𝑟 𝑏 = 0 and is called semiprime if 
𝑎𝑅𝑎 = 0 then 𝑎 = 0. A derivation on 𝑅 is an additive 
mapping 𝑑: 𝑅 → 𝑅 satisfying 𝑑(𝑥𝑦) = 𝑑(𝑥)𝑦 + 𝑥𝑑(𝑦) 
for all 𝑥. 𝑦 ∈ 𝑅. El Sofy (2000) defined a 
homoderivation on 𝑅 to be an additive mapping ℎ 
from 𝑅 into itself such that ℎ(𝑥𝑦) = ℎ(𝑥)ℎ(𝑦) +
ℎ(𝑥)𝑦 + 𝑥ℎ(𝑦) for all 𝑥. 𝑦 ∈ 𝑅. The only additive map 
which is both derivation and homoderivation on 
prime ring is the zero map. If 𝑆 ⊆ 𝑅, then a mapping 
𝑓: 𝑅 → 𝑅  preserves 𝑆 𝑖𝑓 𝑓(𝑆) ⊆S. A mapping 𝑓: 𝑅 →
𝑅  is said to be zero-power valued on 𝑆 if  𝑓  
preserves 𝑆 and if for each 𝑥 ∈ 𝑆, there exists a 
positive integer 𝑛(𝑥) > 1 such that 𝑓𝑛(𝑥) = 0 (El 
Sofy, 2000). Ashraf and Rehman (2001) had shown 
that if 𝑅 is a prime ring, 𝐼 an ideal of 𝑅 and 𝑑: 𝑅 → 𝑅  
is a derivation of 𝑅, then 𝑅 is a commutative ring if 
and only if 𝑅 satisfies any one of the properties 

 

𝑑(𝑥𝑦) ± 𝑥𝑦 ∈ 𝑍(𝑅). 𝑑(𝑥𝑦) + 𝑥𝑦 ∈ 𝑍(𝑅). 𝑑(𝑥𝑦) ± 𝑦𝑥 ∈
𝑍(𝑅). 𝑑(𝑥𝑦) + 𝑦𝑥 ∈ 𝑍(𝑅). 𝑑(𝑥)𝑑(𝑦) ± 𝑥𝑦 ∈
𝑍(𝑅) 𝑎𝑛𝑑 𝑑(𝑥)𝑑(𝑦) + 𝑥𝑦 ∈ 𝑍(𝑅) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥. 𝑦 ∈ 𝐼.  
 

Motivated by these results, we prove a similar 
result regarding homoderivations. To achieve our 
aim, we will use the following lemma. 
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Lemma 1.1 (Lemma 4): Let b and ab be in the 
center of a prime ring R. If b≠0, then a is in Z(R) 
(Mayne, 1984).  
 

Remark 1.2 (Remark 3): Let R be a prime ring. If R 
contains a nonzero commutative left ideal, then R is 
a commutative ring (Bresar, 1993). 
  
Lemma 1.3 (Lemma 1.1): Let R be a ring and 0≠I a 
right ideal of R. Suppose that a∈I such that an = 0 for 
a fixed integer n. Then R has a nonzero nilpotent 
ideal (Herstein, 1969).  
 

Lemma 1.4 (Corollary 2.5): Let R be a prime ring of 
characteristic not 2 and I a nonzero left ideal. If R 
admits a nonzero homoderivation h which is 
centralizing on I, then R is commutative.  

2. On the commutative conditions 

Theorem 2.1: Let R be a prime ring of characteristic 
not 2, and I be a nonzero left ideal in R. If h is a 
nonzero homderivation which is zero-power valued 
on I. Then, for all x, y∈I, the following conditions are 
equivalent: 

  
i. 𝑥ℎ(𝑦)  ± 𝑥𝑦 ∈ 𝑍(𝑅)  

ii. 𝑥ℎ(𝑦)  ± 𝑦𝑥 ∈ 𝑍(𝑅)  
iii. 𝑥ℎ(𝑦)  ± [𝑥. 𝑦]  ∈ 𝑍(𝑅)  
iv. ℎ(𝑦)𝑥 ± [𝑥. 𝑦]  ∈ 𝑍(𝑅)  
v. [ℎ(𝑥). 𝑦]  ± 𝑥𝑦 ∈ 𝑍(𝑅)  

vi. [ℎ(𝑥). 𝑦]  ± 𝑦𝑥 ∈ 𝑍(𝑅)  
vii. 𝑅 is commutative.  

  
Proof: If (vii) holds then all other conditions are 
true. To prove (i) ⟹ (vii). By hypothesis, we have 
  
𝑥ℎ(𝑦)  ± 𝑥𝑦 ∈ 𝑍(𝑅) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈  𝐼.                   (1) 
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Replacing x by yx in (1), we get 𝑦(𝑥ℎ(𝑦)  ± 𝑥𝑦)  ∈

𝑍(𝑅). 
By Lemma 1.1, 𝑦 ∈ 𝑍(𝑅) 𝑜𝑟 𝑥ℎ(𝑦)  ± 𝑥𝑦 = 0. If 

y∈Z(R) for all y∈I hence I⊂Z(R). Therefore I is 
commutative. By Remark 1.2, R is commutative. If  

 
𝑥ℎ(𝑦)  ± 𝑥𝑦 = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈ 𝐼.                   (2) 
 

Replace y by yx in (2), we have x(h(y) ±y)h(x)=0. 
Since h is zero-power valued on I, there exists an 

integer n(y)>1 such that hn(y)(y) = 0 for all y∈I. 
Replacing y by  

 
𝑦 − ℎ(𝑦) + ℎ2(𝑦) + ⋯ + (−1)𝑛(𝑦)−1ℎ𝑛(𝑦)−1(𝑦)  

 
in the last relation. We have 𝑥𝑦ℎ(𝑥) = 0 for all 𝑥, 𝑦 ∈

𝐼. Hence, 𝑥𝑅𝐼ℎ(𝑥) = 0 for all 𝑥 ∈ 𝐼. But I ≠ 0. So 
Ih(x) = 0 for all 𝑥 ∈ 𝐼. Hence the Eq. 2 implies x2 = 0 
for all 𝑥 ∈ 𝐼. By Lemma 1.3, R has a nonzero 
nilpotent ideal which contradict that R is prime ring.  
 

To prove (ii) → (vii). By hypothesis, we have  
 

𝑥ℎ(𝑦) ± 𝑦𝑥 ∈ 𝑍(𝑅)  𝑓𝑜𝑟 𝑎𝑙𝑙  𝑥. 𝑦 ∈ 𝐼.                   (3) 

 
Replace x by yx in (3), we have y(xh(y)  ± yx)  ∈

Z(R). By Lemma 1.1, y ∈ Z(R) or xh(y)  ± yx = 0, If 
y ∈ Z(R)  for all  y ∈ I. hence I ⊆ Z(R). Therefore I is 
commutative. By Remark 1.2, R is commutative. If  

 
𝑥ℎ(𝑦)  ± 𝑦𝑥 = 0  𝑓𝑜𝑟 𝑎𝑙𝑙  𝑥. 𝑦 ∈ 𝐼.                   (4) 

 
Replace y by xy in (4) we have xh(x)(h(y)  ± y) =

0 for all x. y ∈ I. Since h is zero-power valued on I , so 
xh(x)y = 0 for all x. y ∈ I. Hence, xh(x)RI = 0 for all 
x ∈ I ⋅ By primeness of R, we get xh(x) = 0 for all  x ∈
I. So, by (3) we get x2 = 0 for all x ∈ I. By Lemma 
1.3, this is contradiction. To prove (iii) → (vii). By 
hypothesis, we have  

 
𝑥ℎ(𝑦)  ±  [𝑥. 𝑦]  ∈ 𝑍(𝑅)  𝑓𝑜𝑟 𝑎𝑙𝑙  𝑥. 𝑦 ∈ 𝐼.                  (5) 
 

Replace x by yx in (5), 𝑦(𝑥ℎ(𝑦)  ± [𝑥. 𝑦])  ∈ 𝑍(𝑅) 
either 𝑦 ∈ 𝑍(𝑅) or 𝑥ℎ(𝑦)  ±  [𝑥. 𝑦] = 0. If 𝑦 ∈ 𝑍(𝑅) 
and 𝐼 ⊆ 𝑍(𝑅) then I is commutative ideal. By Remark 
1.2, R is commutative. If  

 
𝑥ℎ(𝑦)  ±  [𝑥. 𝑦] = 0 𝑓𝑜𝑟 𝑎𝑙𝑙  𝑥. 𝑦 ∈ 𝐼.                   (6) 
 
Replace y by yx in (6) we get: 
 

𝑥(ℎ(𝑦) ± 𝑦)ℎ(𝑥) = 0  𝑓𝑜𝑟 𝑎𝑙𝑙  𝑥. 𝑦 ∈ 𝐼.     
  

Since h is zero-power valued on I. so we get 
xyh(x) = 0 for all x. y ∈ I which implies xRIh(x) = 0 
for all x ∈ I. By primeness of R either x = 0 or 
Ih(x) = 0. But I ≠ 0. So Ih(x) = 0 for all x ∈ I. Form 
(6) we have [x. y] = 0 for all x. y ∈ I. Then I is 
commutative ideal. By Remark 1.2. We have R is 
commutative. To prove (iv)  ⟶  (vii) by hypothesis 
we get: 

 

ℎ(𝑦)𝑥 ±  [𝑥. 𝑦]  ∈ 𝑍(𝑅)  𝑓𝑜𝑟 𝑎𝑙𝑙  𝑥. 𝑦 ∈ 𝐼.                  (7) 
 

Replace x by xy in (7)  

(ℎ(𝑦)𝑥 ±  [𝑥. 𝑦])𝑦 ∈ 𝑍(𝑅) 
 

Since h(y)x ±  [x. y]  ∈ Z(R), we get (h(y)x ±
 [x. y])y = y(h(y)x ± [x. y]). So y(h(y)x ± [x. y]) ∈
Z(R). By Lemma 1.1, we have y ∈ Z(R) or h(y)x ±
 [x. y] = 0. If y ∈ Z(R) for all y ∈ I. I ⊆ Z(R). Then I is 
commutative, by Remark 1.2, R is commutative. If  

 
ℎ(𝑦)𝑥 ±  [𝑥. 𝑦] = 0  𝑓𝑜𝑟 𝑎𝑙𝑙  𝑥. 𝑦 ∈ 𝐼.                   (8) 
 

Replace y by xy in (8), h(x)(h(y)  ± y)x = 0. Since 
h is zero-power valued on I, so h(x)yx = 0 for all 
x. y ∈ I . Then we get h(x)RIx = 0. 

By primeness of R we have h(x) = 0 since Ix ≠
0 for all x ∈ I. 

If h(x) = 0  for all x ∈ I , we have [x. y] = 0 by (8), 
then I is commutative. By Remark 1.2, R is 
commutative. 

 
To prove (v) ⟶ (vii). By hypothesis, we have  
 

[ℎ(𝑥). 𝑦]  ± 𝑥𝑦 ∈ 𝑍(𝑅)  𝑓𝑜𝑟 𝑎𝑙𝑙  𝑥. 𝑦 ∈ 𝐼.                  (9) 
 

Replace y by yh(x) in (8) for all x. y ∈ I, we have,  
 
([ℎ(𝑥). 𝑦]  ± 𝑥𝑦)ℎ(𝑥)  ∈ 𝑍(𝑅)  𝑓𝑜𝑟 𝑎𝑙𝑙  𝑥. 𝑦 ∈ 𝐼. 

 
By Lemma 1.1 either h(x)  ∈ Z(R) or [h(x). y] + xy =
0 for all x. y ∈ I. 

If h(x)  ∈ Z(R) for all x ∈ I. then [h(x). x] = 0. By 
Lemma 1.4, R is commutative. If  

 
[ℎ(𝑥). 𝑦] + 𝑥𝑦 = 0  𝑓𝑜𝑟 𝑎𝑙𝑙  𝑥. 𝑦 ∈ 𝐼.                   (10) 
 

Replace y by xy in (10) 
 
[ℎ(𝑥). 𝑥𝑦] + 𝑥𝑥𝑦 = 0  𝑓𝑜𝑟 𝑎𝑙𝑙  𝑥. 𝑦 ∈ 𝐼. 
𝑥([ℎ(𝑥). 𝑦] + 𝑥𝑦) + [ℎ(𝑥). 𝑥]𝑦 = 0  𝑓𝑜𝑟 𝑎𝑙𝑙  𝑥. 𝑦 ∈ 𝐼. 
[ℎ(𝑥). 𝑥]𝑦 = 0  𝑓𝑜𝑟 𝑎𝑙𝑙  𝑥. 𝑦 ∈ 𝐼. 
[ℎ(𝑥). 𝑥]𝑅𝐼 = 0  𝑓𝑜𝑟 𝑎𝑙𝑙  𝑥. 𝑦 ∈ 𝐼. 

 

By primeness of R and I ≠ 0, we have [h(x). x] =
0 for all x ∈ I. By Lemma 1.4, R is commutative. 

To prove (vi) ⟶(vii). By hypothesis, we have  
 
[ℎ(𝑥). 𝑦] ± 𝑦𝑥 ∈ 𝑍(𝑅)  𝑓𝑜𝑟 𝑎𝑙𝑙  𝑥. 𝑦 ∈ 𝐼.                (11) 
 

Replace y by h(x)y in (11) 
  

ℎ(𝑥)([ℎ(𝑥). 𝑦] + 𝑦𝑥)  ∈ 𝑍(𝑅)  𝑓𝑜𝑟 𝑎𝑙𝑙  𝑥. 𝑦 ∈ 𝐼. 

 
By Lemma 1.1 either h(x)  ∈ Z(R) or [h(x). y] +

yx = 0. 
If h(x)  ∈ Z(R) for all x ∈ I. then [h(x). x] = 0. By 

Lemma 1.4, R is commutative. If  
 

[h(x). y] + yx = 0  for all x. y ∈ I          (12). 

Replace y by xy in (12) 
 

𝑥([ℎ(𝑥). 𝑦] + 𝑦𝑥) + [ℎ(𝑥). 𝑥]𝑦 = 0  𝑓𝑜𝑟 𝑎𝑙𝑙  𝑥. 𝑦 ∈ 𝐼. 
[ℎ(𝑥). 𝑥]𝑦 = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥. 𝑦 ∈ 𝐼. 
 

Since I is a nonzero left ideal [h(x). x]RI = 0. By 
primeness of R and I ≠ 0, we have [h(x). x] = 0 for 
all x ∈ I. By Lemma 1.4, R is commutative. 



E. F. Alharfie, N. M. Muthana /International Journal of Advanced and Applied Sciences, 5(5) 2018, Pages: 79-81 

81 
 

3. On condition 𝒉[𝒙. 𝒚] = −[𝒙. 𝒚] 

Daif and Bell (1992) proved that a prime ring R 
with a nonzero ideal I must be commutative if it 
admits a derivation d such that d([x. y]) = −[x. y]  . 
Motivated by their results, we investigate the 
commutativity of rings admitting a homoderivation 
h such that h([x. y]) = −[x. y] . We begin with the 
following useful lemma.  

 

Lemma 3.1 (Corollary 3.4.2): Let R be a prime ring 
of char(R) ≠ 2. and I ≠ (0), a two sides ideal of R. If 
R admits a a nonzero homoderivation h on I such 
that h([x. y]) = [x. y] for all x. y ∈ I. Then R is 
commutative (El Sofy, 2000).  

 
Theorem 3.2: Let I be nonzero left ideal in a prime 
ring R that admits a homoderivation h which is zero-
power valued on I satisfying xy + h(xy) = yx +
h(yx)  for all x. y ∈ I. Then R is commutative.  
 
Proof: By hypothesis,  
 
𝑥𝑦 + ℎ(𝑥𝑦) = 𝑦𝑥 + ℎ(𝑦𝑥)  𝑓𝑜𝑟 𝑎𝑙𝑙  𝑥 𝑦 ∈ 𝐼.  

 
i.e., 
 
ℎ([𝑥. 𝑦]) = −[𝑥. 𝑦]  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥. 𝑦 ∈ 𝐼.  
 
Therefore  
 
[ℎ(𝑥) + 𝑥. ℎ(𝑦)] + [ℎ(𝑥). 𝑦] = −[𝑥. 𝑦]  𝑓𝑜𝑟 𝑎𝑙𝑙  𝑥. 𝑦 ∈ 𝐼  
[ℎ(𝑥) + 𝑥. ℎ(𝑦)] + [ℎ(𝑥) + 𝑥. 𝑦] = 0  𝑓𝑜𝑟 𝑎𝑙𝑙  𝑥. 𝑦 ∈ 𝐼  
[ℎ(𝑥) + 𝑥. ℎ(𝑦) + 𝑦] = 0  𝑓𝑜𝑟 𝑎𝑙𝑙  𝑥. 𝑦 ∈ 𝐼. 

 

Since h is zero-power valued on I, so there exists 

an integer n(y) > 1 such that h
n(y)

(y)=0 for all y ∈
I. Replacing y by 

 

𝑦 − ℎ(𝑦) + ℎ2(𝑦) + ⋯ + (−1)𝑛(𝑦)−1ℎ𝑛(𝑦)−1(𝑦) 
 

in the last relation. Also, there exists an integer 

n(x) > 1 such that h
n(x)

(x)=0 for all x ∈ I replacing 

x by x-h(x)+h
2

(x)+...+(-1)
n(x)-1

h
n(x)-1

(x) in the 
last relation, we get  

 

[𝑥. 𝑦] = 0  𝑓𝑜𝑟 𝑎𝑙𝑙  𝑥. 𝑦 ∈ 𝐼  
 

Then I is a commutative ideal in prime ring. By 
Remark 1.2, R is commutative. 

 
Theorem 3: Let R be a prime ring with char (R) ≠ 2 
and I be a nonzero ideal of R. Suppose h is a nonzero 
homoderivation which is zero-power valued on I. If 
one of the following conditions are satisfied for all 
x. y ∈ I:  

 
i. ℎ(𝑥𝑦) = 𝑥𝑦. 

ii. ℎ(𝑥𝑦) = 𝑦𝑥. 
 

Then R is commutative. 
 

Proof: Suppose (i) is satisfies for all x. y ∈ I we get  
 
ℎ(𝑥𝑦 − 𝑦𝑥) = 𝑥𝑦 − 𝑦𝑥  𝑓𝑜𝑟 𝑎𝑙𝑙  𝑥. 𝑦 ∈  𝐼  
ℎ(𝑥𝑦) − ℎ(𝑦𝑥) = 𝑥𝑦 − 𝑦𝑥  𝑓𝑜𝑟 𝑎𝑙𝑙  𝑥. 𝑦 ∈ 𝐼  
ℎ([𝑥. 𝑦]) = [𝑥. 𝑦]  𝑓𝑜𝑟 𝑎𝑙𝑙  𝑥. 𝑦 ∈ 𝐼  

 

By Lemma (3.1), R is commutative. Suppose (ii) is 
satisfies for all x. y ∈ I. We get  

 
ℎ(𝑥𝑦) − ℎ(𝑦 𝑥) = 𝑦𝑥 −  𝑥𝑦  𝑓𝑜𝑟 𝑎𝑙𝑙  𝑥. 𝑦 ∈ 𝐼  
ℎ([𝑥. 𝑦]) = −[𝑥. 𝑦]  𝑓𝑜𝑟 𝑎𝑙𝑙  𝑥. 𝑦 ∈ 𝐼.                 (14) 
 

By Theorem (3.2), we obtain R is commutative. 

4. Conclusion 

The goal of this paper is to prove the 
commutativity of prime rings with homoderivation 
which satisfying some algebraic conditions. This 
article is divided into two sections; in the first 
section, the commutativity of prime rings R was 
proved of the homoderivation on R satisfies 
following conditions for all 

 
𝑥. 𝑦 ∈ 𝑅: (𝑖)𝑥ℎ(𝑦) ± 𝑥𝑦 ∈ 𝑍(𝑅). (𝑖𝑖)𝑥ℎ(𝑦) ± 𝑦𝑥 ∈
𝑍(𝑅). (𝑖𝑖𝑖)𝑥ℎ(𝑦) ± [𝑥. 𝑦] ∈ 𝑍(𝑅). (𝑖𝑣)ℎ(𝑦)𝑥 ± [𝑥. 𝑦] ∈
𝑍(𝑅). (𝑣)[ℎ(𝑥). 𝑦] ± 𝑥𝑦 ∈  𝑍(𝑅)𝑎𝑛𝑑 (𝑣𝑖)[ℎ(𝑥). 𝑦] ± 𝑦𝑥 ∈
𝑍(𝑅).   

 

In the second section, we investigate the 
commutativity of prime ring, if R admits a nonzero 
homoderivation h such that h([x. y]) =  ± [x. y] for 
all x. y in a nonzero left ideal. 
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